Fartyg, människa och ljusmiljö
Sammanfattning

Livet som sjöman innehåller flera hälsofaktorer och hör till de farligare yrkena. En av faktorerna som är värdefullt att fokusera på är sömn, då den riskerar att påverkas extra negativt för sjömän på grund av skiftarbete, brutna frivakter och eventuella långa resor vid av- och påmönstring med påföljande jetlag. Sömnen är antagligen av större betydelse för vårt långsiktiga välbefinnande än vad vi hittills trott och forskningen på området pågår alltjämt. Vad som är väldokumenterat och föga förvånande är betydelsen av god sömn för att kunna vara alert och utföra ett säkert arbete.

Dessbättre finns det möjligheter att förbättra sömnen med relativt enkla medel som till exempel hur man låter sig exponeras för ljus vid rätt tillfälle och kvalitet, vilket den här rapporten går djupare in på. Råden som presenteras är avsedda att kunna tas till vara av rederi, befäl och den enskilde besättningsmannen. Det är dock viktigt att förändringarna sker planerat, varsamt och kontrollerat i överenskommelse med rederi och befäl så att man säkerställer att i inga oönskade effekter uppstår eller att man kan hantera dessa utan att fara uppstå.

För att motivera att arbeta med ljuskvalitet ges en bakgrund där sömnen och dess betydelse beskrivs relativt ingående.

En ljuskälla med det önskvärda blå ljuset, vilket gynnar vår dygnsrytm, beskrivs och sätts i sitt sammanhang relativt hur våra vanligaste typer av belysning fungerar.

En god dygnsrytm beror inte bara av blått ljus vid rätt tillfälle, utan också att blått ljus före sänggående undviks. Detta beskrivs liksom tillgängliga medel för att klara detta utan behöva släcka ned totalt eller helt undvika exempelvis datorskärmar.

Sist, men inte minst, behandlas hur man praktiskt kan arbeta med personliga rutiner ombord för att använda ljuset till sin fördel för att komma in i rätt dygnsrytm även vid arbete nattetid.
<table>
<thead>
<tr>
<th>Ordlista</th>
<th>Beskrivning</th>
</tr>
</thead>
<tbody>
<tr>
<td>cirkadisk rytm</td>
<td>Dygnstrytm.</td>
</tr>
<tr>
<td>CRI</td>
<td>Färgåtergivningsindex.</td>
</tr>
<tr>
<td>fluorescerande ljus</td>
<td>Ljuskälla av gasurladdningstyp, till exempel lysrörs.</td>
</tr>
<tr>
<td>FSI</td>
<td>Fullspektrumindex</td>
</tr>
<tr>
<td>ganglieceller</td>
<td>Celler i ögat känsliga för blått ljus.</td>
</tr>
<tr>
<td>kortisol</td>
<td>Ett hormon relaterat till ämnesomsättning och stress.</td>
</tr>
<tr>
<td>ljusspektrum</td>
<td>Ljusets uppdelning i olika våglängder.</td>
</tr>
<tr>
<td>ljustemperatur</td>
<td>Ett mått på hur vitt ljus är. Anges i Kelvin.</td>
</tr>
<tr>
<td>lumen</td>
<td>SI-enheten för ljusflöde och har enhetssymbolen lm.</td>
</tr>
<tr>
<td>lux</td>
<td>Lux är SI-enheten för belysningsstyrka, eller illuminans, och är definierad som lm/m².</td>
</tr>
<tr>
<td>melatonin</td>
<td>Ett hormon som påverkar dygnstrytm och sömn.</td>
</tr>
<tr>
<td>volfram</td>
<td>Metalliskt grundämne vanligt i glödlampor</td>
</tr>
<tr>
<td>zeitgeber</td>
<td>Stimuli som påverkar dygnstrytmen.</td>
</tr>
</tbody>
</table>
Innehållsförteckning

Sammanfattning...2

1 Ordlista ..3

2 Inledning ...6
 2.1 Påfrestningar som sjömän ...6
 2.1.1 Arbetsskador ...6
 2.1.2 Ohälsa ..6
 2.2 Arbete, vila & sömn ...6
 2.2.1 Ljusets betydelse för Sömn ...6

3 Sömn ..8
 3.1 Introduktion ...8
 3.1.1 Sömnens funktion ..8
 3.1.2 Normal sömn ..8
 3.1.3 Akut sömnbrist ...9
 3.1.4 Kronisk sömnbrist ..9

4 Cirkadiska rytmen ...10
 4.1 Den cirkadiska rytmen ...10
 4.1.1 Ljusets inverkan ...10
 4.1.2 Hormonet melatonin ...11
 4.1.3 En värld med störande ljus ...11
 4.2 Andra effekter av ljus ..12
 4.2.1 Sol och hälsa ...12
 4.2.2 Depression ...12

5 Vanliga ljuskällor och ljuskvalitet ...13
 5.1 Introduktion ...13
 5.1.1 Färgåtergivning ...13
 5.1.2 Färgtemperatur ...13
 5.2 Ljuskällor ...14
 5.2.1 Glödlampor ...14
 5.2.2 Halogenlampor...15
 5.2.3 Gasurladdningslampor, lysrör ...15
 5.2.4 Solid State Lighting, LED ...16

6 Fullspektrumljuskällor ..18
 6.1 Blått ljus ...18
 6.2 Ljusstyrka ..18

SSPA SWEDEN AB – YOUR MARITIME SOLUTION PARTNER

HUVUDKONTOR: Box 24001 · 400 21 Göteborg · Sverige · Tel: 031-772 90 00 · Fax: 031-772 91 24
BESÖKADRESS: Chalmers Tvärgata 10 · 412 58 Göteborg · Sverige
REGIONKONTOR: Fiskargatan 8 · 116 20 Stockholm · Sverige · Tel: 031-772 90 00 · Fax: 08-31 15 43
INTERNET: www.sspa.se · E-MAIL: postmaster@sspa.se · ORG NR/VAT NO: SE556224191801
6.3 Specifikationer för fullspektrumljuskällor ...18
6.3.1 UVA & UVB ...19
6.3.2 Fullspektrumindex, FSI ..20

7 Blåljustblockering ..22
7.1 Blått ljus vid rätt tillfälle ...22
7.2 Gula glasögon ..22
7.2.1 Effekter på sömn ..22
7.2.2 Varianter på glasögon ..22
7.3 Reduktion av ljus från skärmar ...23
7.4 Få naturligt solljus ..23

8 Ljus för fartygsbesättningar ...24
8.1 Bakgrund ..24
8.2 Anpassning av dygnsrytm ...24
8.3 Konflikt med mörkerseendet ...25

9 Slutsatser och diskussion ..27

10 References ..28
2 Inledning

2.1 Påfrestningar som sjömän
Livet som sjöman innebär flera hälsorisker och är listat som det fjärde farligaste yrket när har AFA vägt samman fyra indikatorer på ohälsa (allvarlighetstal) för att få en samlad bild av den arbetss- och sjukdomsrelaterade ohälsan (AFA Försäkring, 2004).

2.1.1 Arbetsskador
Bland de påfrestningar och faror som traditionellt uppmärksammas ser vi bland annat skador vid förtöjning, halkolyckor, arbete med handverktyg, fallolyckor, besvärliga arbetsställningar, buller, extrema temperaturer och, inte minst, de farliga och ofta dödliga olyckorna med giftiga gaser i slutna utrymmen (Arbetsmiljöupplysningen, u.d.).

2.1.2 Ohälsa

2.2 Arbete, vila & sömn
Centralt för att kunna utföra ett säkert arbete är att man är alert och koncentrerad, vilket kräver att man har fått fullgod sömn och känner sig utvilad, vilket även är viktigt för det allmänna välbefinnandet. Något som definitivt hotar en god sömn är skiftarbete, vilket flera positioner ombord kräver.

Men en fullgod sömn är ingen självklarhet bara för att man inte arbetar skift, även buller och sjögång kan påverka sömnlen. Dessutom är fullgod sömn inte självklart ens för gemene man, 30% av svenskarna sover mindre än rekommenderat och cirka 50% uppger att de inte känner sig utvilade efter deras vanliga sömnperiod (Benedict).

2.2.1 Ljusets betydelse för Sömn

För att sätta ljusets betydelse i ett större sammanhang behandlas också sömnen och dess betydelse i en vidare mening och hur den kan förbättras med medel utöver och/eller i kombination med de ljustekniker som beskrivs.
3 Sömn

3.1 Introduktion
Vi tillbringar cirka ⅓ av vår tid sovande och det är ett livsviktigt tillstånd. God sömn är inte bara en förutsättning för att vara pigg och alert under vår vakna tid, utan även avgörande för vår hälsa och vårt välbefinnande i flera aspekter.

Det finns mycket som tyder på sömnen har en mycket fundamental betydelse som är djupt rotad i vår evolution. Alla däggdjur sover, men även fåglar sover och sömnmönstret är likartat med både djupsömn och drömsömn. På senare tid har även studier gjorts som tyder på att även den uråldriga reptilen kan ha liknande sömn. (Emily Underwood, 2016)

3.1.1 Sömnens funktion
Länge var det vetenskapliga intresset för ämnet sömn lågt och först under 1900-talets mitt skedde viktiga framsteg inom sömnforskningen. Även om det fortfarande finns kunskapsluckor inom området vet vi att sömnen är inblandad i en stor mängd psykologiska och biologiska processer i kroppen som är viktiga för vår återhämtning (Åkerstedt, 2004). Bland dessa effekter kan särskilt nämnas att sömn hjälper till att konsolidera nya minnen, hjälper till vid problemlösning när man är vaken och rensar hjärnan från skadliga ämnen (Benedict).

3.1.2 Normal sömn
Sömnens består av flera stadier, från vakenhet till djupsömn i stadie 4, där emellan kommer drömsömn (även kallad REM-sömn), stadie 1, 2 och 3. Det normala sömnbehovet för en vuxen är 6-8 timmar och minskar med stigande ålder. Under REM-sömen har man huvuddelen av sina drömmar medan djupsömmen är den viktigaste fasen för återhämtning. Djupsömn sker mestadels i början av sömnpериoden och därför räknas den som den viktigaste och kan vara tillräcklig för en enstaka natt (Nestor, 2015).
3.1.3 Akut sömnbrist

Först 10 till 15 timmar efter utebliven sömn kommer besvär som okoncentration med mera. Om sömnbristen byggs på vidare uppkommer trötthet dagtid, omdömeslöshet, irriterbarhet och humörsvängningar. Risken för olyckor ökar i trafiken och på arbetet (Three Doctors, 2015).

3.1.4 Kronisk sömnbrist

En störda eller för kort sömn under längre tid kan påverka vår hälsa negativt och är associerad med flera av de åkommor som är vanliga i dagens samhälle idag, som till exempel hjärt-kärlsjukdom, diabetes, depression och utmattningssyndrom (FORTE, Forskningsrådet för hälsa, arbetsliv och välfärd, 2013). Kronisk sömnstörning är även associerad med bland annat minnesstörningar, oro, ångest, minskad stresstolerans, sänkt smärttolerans och impotens/minskad sexlust (Three Doctors, 2015).

Till de vanligaste orsakerna till en störd sömn hör (Nestor, 2015):

- Barn
- Skiftarbete
- Oro
- Stress
4 Cirkadiska rytmen

4.1 Den cirkadiska rytmen

Vår dygnsrytm, den så kallade cirkadiska rytmen, styr många av våra viktiga kroppsfunktioner så som kroppstemperatur, hormonutsöndring, metabolism och inte minst vakenhet och sömn (National Institute of General Medical Sciences, 2016).

Figur 2. Den cirkadiska rytmen. Bild av Yassine Mrabet “Overview of biological circadian clock in humans”

4.1.1 Ljusets inverkan

En av de viktigaste yttre faktorerna, så kallade zeitgeber (tyska för tidgivare), som styr den cirkadiska rytmen för människan är ljus. Men det finns även andra zeitgebers som till exempel temperaturförändringar och sociala stimuli (SK Elmore, 1994).

Mekanismen för hur ljuset påverkar människans cirkadiska rymt har inte varit känd särskilt långt. I 150 år har vi däremot haft en förhärskande modell över Ögats funktion med tappar och stavar som utgör receptorer för ljus och bildandet av synen. Först sent 1990-tal upptäcktes en ny typ av ljusreceptorer, speciella gangliocellor (pRGCs) som är känsliga för företrädesvis den blå delen av ljusspektrumet med våglängd λmax ~ 480nm (Foster, 2012).
4.1.2 Hormonet melatonin

Utöver det handikapp som förknippas med att vara blind kan ytterligare en besvärande faktor yttra sig genom att ljuset inte når in till den cirkadiska klockan via näthinnan, vilket in sin tur kan ge upphov till sömnproblem nattetid och trötthet under dagtid. Detta kan behandlas med tillskott av melatonin och då är tidpunkten för när det intas mycket viktigt för att återställa en normal dygnshög. (Skene & Arendt, 2007).

Det är någorlunda väldokumenterat att tillförsel av melatonin även kan minska besvären av jetlag, det vill säga en rubbad dygnshög till följd av förflyttning över flera tidszoner, även om man kanske inte blir helt besvärsfri (Läkemedelsverket, 1998). Detta kanske kan vara intressant att studera vidare för att hjälpa sjöpersonal att komma in i en bra dygnshög efter långa resor ihop med på- och avmönstring. Risker, som till exempel dåsighet om melatonin tas vid feltillfälle, måste dock beaktas nog. (förf. kom.).

4.1.3 En värld med störande ljus

99% av den amerikanska och europeiska befolkningen lever under ljusförorenade himlavalv. Även om detta sken är relativt svagt ger det en indikation om hur mycket ljuskällor som existerar i vår utomhusmiljö och mer direkt kan påverka människan (Fabio Falchi, 2016). Detta gäller ju på våra tätbefolkade kontinenter medan haven är närmast totalt befriade från
ljusförroreningar, vilket borde ge sjömän en fantastisk möjlighet att uppleva naturligt mörker och även skåda stjärnhimlen om sådant intresse finns.

Figure 3. World map of artificial sky brightness. Fabio Falchi et al. Sci Adv 2016;2:e1600377

4.2 Andra effekter av ljus

4.2.1 Sol och hälsa

I en nyligen publicerad svensk studie har man tittat inte bara på risken för att dö i cancer, utan även på den totala dödligheten för de som vistats mycket i solen. Till skillnad från vad man skulle kunna tro är deras förväntade livslängd 0,6-2,1 år längre än de som undviker solljus. Förklaringen ligger i att de som vistas mer i solen har minskad risk för hjärt- kärlsjukdom och andra icke cancersjukdomar och då ökar den relativa förekomsten av cancer i och med att livslängden ökar. Studien ger inte svar på varför ökad solexponering är gynnsam, men ökade d-vitaminnivåer anges som en trolig förklaring (Lindqvist, o.a., 2016). Åtminstone 1000 olika gener styr och reglerar i stort sett all vävnad i kroppen och är beroende av vitamin D3, den aktiva formen av vitamin d, och påverkar så skilda saker som kalciummetabolismen, immunsystemet och musklerna (Mead, 2008).

4.2.2 Depression

Det finns en diagnos som benämns Seasonal Affective Disorder (SAD) eller på svenska, årstidsbunden depression, som man misstänker påverkas av brist på dagsljus (Chahal & Mardon, 2009). SAD är vanligast på vintern och studien visade att människor bosatta på Grönland hade mer förekomst av denna åkomma ju längre norrut de bodde. En vanlig behandling är ljusstereapi med fullspektrumljus.
5 Vanliga ljuskällor och ljuskvalitet

5.1 Introduktion
Det skiljer rätt mycket i ljusegenskaper för olika ljuskällor och följdende orientering i ämnet behandlar de vanligaste typerna på marknaden och som förekommer frekvent i olika installationer. Innehållet i detta kapitel är i flera delar hämtat från boken Spyridon Kitsinelis, Light Sources, Second Edition Basics of Lighting Technologies and Applications och är utmärkt läsning för den som vill förkovra sig mer i ämnet.

Redan 1661 kunde Isaac Newton visa att vitt ljus består av flera färger, från de kortaste våglängderna av lila, indigo, blå över till grön och gult och vidare till de längre våglängderna med orange och röd (Breslin & Montwill, 2013).

5.1.1 Färgåtergivning

5.1.2 Färgtemperatur
För att beskriva hur vitt ett ljus upplevs brukar man använda de engelska termerna warm white och cool white vilka motsvarar av de svenska termerna varmvit och kallvit. Tillverkarna av ljuskällor använder sig av dessa benämningar också även om innebörden av dem kan skilja sig något åt, men följande definition är ändå användbar:
- Varmvit < 3500 K
- Neutral = 3500-5000 K
- Kallvit > 5000 K

K, det vill säga Kelvin, är måttet på hur vitt ljuset är och kallas färgtemperatur och ju vitare ljuset är desto högre färgtemperatur har det. Benämningen temperatur kommer från den ljuston en svartkropp utstrålar vid en viss temperatur.

5.2 Ljuskällor

Vissa ljuskällor, där ljuset kommer från upphettning av ett material, ofta elektrisk ström, ger ett ljus som är vitare ju högre temperatur tråden har och har ett färgspecrum som är kontinuerligt och komplett, det vill säga ett CRI på 100. Flera andra typer av ljuskällor bygger annan teknik än upphettning av ett material, varför färgspektrat kan vara långt ifrån kontinuerligt eller neutrat och kan därför ha ett CRI långt under 100 (Kitsinelis, 2015).

5.2.1 Glödlampor

Glödlampor har funnits länge och 1879 räknas som glödlampans tillkomst av Alva Edison, även om flera andra var inblandade ännu tidigare. Ljuset kommer från den elektriskt upphettade glödande metalltråden. Glödlampan har flera viktiga fördelar som lågt pris, kan drivas av både växelström eller likström och har ett kontinuerligt spektrum och täcker hela det synliga området.

5.2.2 Halogenlampor

5.2.3 Gasurladdningslampor, lysrör

5.2.4 Solid State Lighting, LED

En de mest intressanta typerna av ljuskällor är lysdioder eller Light Emitting Diods (LED), som till hör en kategori som benämns Solid-State Lighting (SSL) = halvledarljus. Till denna kategori hör även Organic LED (OLED) och polymer LED (POLED) som ännu inte har samma mognadsstatus som LED, men som de närmaste årtionden kanske kommer visa sig vara ännu betydelsefullare än LED. Utvecklingen av LED startade redan i början av 1900-talet och bland de viktigare genombrottet kan nämnas den första masstillsverkningen 1968 och uppfinnandet av den blå lysdioden 1993 (som senare gav uppfinnarna Nobelpriset 2014), vilket var förutsättningen för skapandet av vitt lysdiodljus. Fortfarande utvecklas LED-tekniken snabbt och de senaste 40 åren har ljusutbytet fördubblats var tjugofjärde månad.

Ljuset från en LED skapas då ström flödar genom ett specifikt material eller att det utsätt för elektriskt fält. Ljuset från dioden beror på vilket material det är och spänner över ett relativt snävt spektrumintervall. För att skapa ett vitt ljus krävs det att blått- eller UV-ljus kombineras med ett skikt av fosfor, på liknade sätt som i lysrör, som gör en omvandling till vitt ljus. Precis som för lysrör så går det att få god färgåtergivning, men det kommer till priset av lägre effektivitet i huvudsak på grund av Stokes förluster. En annan metod är exempelvis att kombinera flera ljusdioder med respektive rött, blått och grönt ljus och på så sätt generera vitt ljus. Det går att använda fler eller färre
färg och också, till exempel endast blått och gult kan fås att uppfattas som vitt, men färgåtergivningsegenskaperna blir begränsade.
LED slutar normalt inte att fungera tvärt utan deras prestanda minskar succesivt. Livslängden är cirka 50 000 timmar för LED och då har de cirka 70% av ljusflödet kvar.
6 Fullspektrumljuskällor

6.1 Blått ljus

Det går att beskriva innehållet av cirkadiskt ljus, det vill säga det blå ljuset som påverkar dygnsrhythm, i förhållande till synligt ljus för olika ljuskällor. För att kunna jämföra ljuskällor med varandra har man ansatt ett relativt förhållande där ett vanligt lysrör på med en färgtemperatur på 3000 K, varmvitt, har ett värde på 1 och ett högre värde ger då mer cirkadiskt ljus. Tabellen nedan visar några exempel över våra vanligaste ljuskällor (Rea, Figueiro, & Bullough, 2002).

<table>
<thead>
<tr>
<th>Lysrör</th>
<th>Färgtemperatur (K)</th>
<th>Relativt förhållande</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysrör</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000 K</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>4100 K</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>7500 K</td>
<td>2.56</td>
<td></td>
</tr>
<tr>
<td>Glödlampa</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>Vit LED</td>
<td>2.91</td>
<td></td>
</tr>
<tr>
<td>Dagsljus 6500K</td>
<td>2.78</td>
<td></td>
</tr>
</tbody>
</table>

6.2 Ljusstyrka

6.3 Specifikationer för fullspektrumljuskällor

Med vetskap om att ögats ganglieceller, vilka till stor del styr vår cirkadiska rytm är känsliga för den blå väglängden runt 440 nanometer, bör man sikta

Figur 7 Jämförelse av ljusspektra mellan dagsljus (blå), fullspektrumlysrörr (grön) och fullspektrumgjödlampa (röd). Källa: Rensselaer Polytech Institute, Full-Spectrum Light Sources.

Figuren ovan visar spektralfördelningen för dagsljus respektive två ljuskällor där tillverkarna gör anspråk att de är av fullspektrumtyp – ett lysrör och en glödlampa.

6.3.1 UVA & UVB

Det är dock inte av nödvändigt att leta efter ljuskällor som efterliknar solens innehåll av UVA och UVB, det vill säga våglängderna 315-400 och 290-315 nanometer då de inte är viktiga för den cirkadiska rytmen och det är okänt om de tillför nytta i artificiell form. Dessutom är intensiteten från en artificiell belysningskälla normalt många gånger lägre än från solsken. Man bör också vara observant på att effektiviteten ofta kan vara lägre i fullspektrumlampor, det vill säga antal lumen per watt är mindre och att man kan behöva kompensera för detta för att uppnå tillräcklig ljusmängd vid ett eventuellt byte av ljuskällor.
6.3.2 Fullspektrumindex, FSI

Det har också föreslagits ett index, benämnt full-spectrum index och förkortat FSI, för att värdera hur bra en fullspektrumljuskälla är och värden på FSI skall då vara under 2.0 (Rensselaer Polytech Institute, 2005). Tyvärr verkar inte denna metod ha fått ett allmänt genomslag.

I figuren nedan visas uppmätta värden för flera ljuskällor, varav de markerade i rött är vad fabrikanten hävdar är av fullspektrumtyp eller motsvarande. Av de 8 uppmätta fullspektrumljuskällorna är 4 att betrakta som godkända med ett FSI under 2.0 och de är alla av lysrörstyp. Man kan också notera att de finns ett par ljuskällor som inte påstås vara av fullspektrumtyp, men ändå håller ett FSI-värde under 2.0 (Rensselaer Polytech Institute, 2005).

I de fall FSI inte är angivet, och det är nog tyvärr inte ovanligt, får man själv använda sig av de specifikationer som finns, eller kontakta leverantör eller tillverkare för att få kompletterande upplysningar om spektruminnehållet.
<table>
<thead>
<tr>
<th>Light Source</th>
<th>CCT</th>
<th>CRI</th>
<th>FSI</th>
<th>Efficacy (lm/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal Energy Spectrum</td>
<td>5457</td>
<td>95</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>Daylight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5500K</td>
<td>5500</td>
<td>100</td>
<td>0.35</td>
<td>N/A</td>
</tr>
<tr>
<td>11000K</td>
<td>11000</td>
<td>100</td>
<td>2.0</td>
<td>N/A</td>
</tr>
<tr>
<td>Xenon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000W</td>
<td>5900</td>
<td>96</td>
<td>1.2</td>
<td>22</td>
</tr>
<tr>
<td>Incandescent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-100W A-lamp</td>
<td>2800</td>
<td>100</td>
<td>5.3</td>
<td>17</td>
</tr>
<tr>
<td>60W GE Reveal A-lamp</td>
<td>2789</td>
<td>78</td>
<td>5.6</td>
<td>11</td>
</tr>
<tr>
<td>Light-Emitting Diode (LED)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White LED</td>
<td>5000</td>
<td>78</td>
<td>5.2</td>
<td>13</td>
</tr>
<tr>
<td>RGB (615nm/525nm/470nm) LED mix*</td>
<td>4400</td>
<td>65</td>
<td>9.8</td>
<td>22</td>
</tr>
<tr>
<td>RGB (540nm/525nm/470nm) LED mix*</td>
<td>4200</td>
<td>26</td>
<td>8.2</td>
<td>22</td>
</tr>
<tr>
<td>Compact Fluorescent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-20W 2700-3000K</td>
<td>2800</td>
<td>82</td>
<td>11</td>
<td>61**</td>
</tr>
<tr>
<td>15-20W 5000K</td>
<td>5000</td>
<td>85</td>
<td>5.9</td>
<td>47**</td>
</tr>
<tr>
<td>15W Verilux CFS15VLX</td>
<td>5777</td>
<td>78</td>
<td>5.6</td>
<td>60**</td>
</tr>
<tr>
<td>T8 Fluorescent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32W 3500K</td>
<td>3300</td>
<td>84</td>
<td>8.3</td>
<td>92</td>
</tr>
<tr>
<td>32W 5000K</td>
<td>4800</td>
<td>87</td>
<td>6.4</td>
<td>88</td>
</tr>
<tr>
<td>32W Lumiram Lumichrome 1XX</td>
<td>5960</td>
<td>93</td>
<td>4.7</td>
<td>73</td>
</tr>
<tr>
<td>32W Verilux F32T8VLX</td>
<td>6369</td>
<td>85</td>
<td>6.2</td>
<td>88</td>
</tr>
<tr>
<td>T12 Fluorescent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40W 5000K</td>
<td>4900</td>
<td>91</td>
<td>1.8</td>
<td>56</td>
</tr>
<tr>
<td>40W Duro-Test Daylight 65</td>
<td>6588</td>
<td>93</td>
<td>1.8</td>
<td>53</td>
</tr>
<tr>
<td>40W Duro-Test Vita-Lite 5500</td>
<td>5159</td>
<td>88</td>
<td>1.4</td>
<td>55</td>
</tr>
<tr>
<td>40W Lumiram Lumichrome 1XC</td>
<td>5207</td>
<td>92</td>
<td>1.6</td>
<td>59</td>
</tr>
<tr>
<td>40W Verilux F40T12VLX</td>
<td>5833</td>
<td>94</td>
<td>1.4</td>
<td>53</td>
</tr>
<tr>
<td>Metal Halide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320-400W / Warm color</td>
<td>3600</td>
<td>68</td>
<td>5.0</td>
<td>92</td>
</tr>
<tr>
<td>175-400W / Cool color</td>
<td>4300</td>
<td>61</td>
<td>4.3</td>
<td>90</td>
</tr>
<tr>
<td>Ceramic Metal Halide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-70W / Warm color</td>
<td>2990</td>
<td>84</td>
<td>6.5</td>
<td>79</td>
</tr>
<tr>
<td>100W / Warm color</td>
<td>3100</td>
<td>81</td>
<td>5.1</td>
<td>93</td>
</tr>
<tr>
<td>100-150W / Cool color</td>
<td>4100</td>
<td>93</td>
<td>1.5</td>
<td>90</td>
</tr>
<tr>
<td>Mercury Vapor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175-400W / Coated lamp</td>
<td>3900</td>
<td>43</td>
<td>5.5</td>
<td>54</td>
</tr>
<tr>
<td>400W / Clear lamp</td>
<td>5900</td>
<td>15</td>
<td>9.6</td>
<td>53</td>
</tr>
<tr>
<td>High Pressure Sodium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200-400W</td>
<td>2000</td>
<td>12</td>
<td>22</td>
<td>120</td>
</tr>
<tr>
<td>Low Pressure Sodium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180W</td>
<td>1800</td>
<td>0</td>
<td>52</td>
<td>180</td>
</tr>
</tbody>
</table>

Figure 8: Ljusläxor markerade med röd text är vad fabrikanten hävdar fullspektrumtyp, vilket bör innebära ett värde på FSI under 2.0. Källa: Rensselaer Polytech Institute, Full-Spectrum Light Sources.
7 Blåljusblockering

7.1 Blått ljus vid rätt tillfälle

I tidigare kapitel är det beskrevet hur viktigt ljus, och då specifikt det blå ljuset, är för den cirkadiska rytmen under förutsättning att man exponeras för ljuset vid rätt tillfälle, det vill säga normalt under dagtid. Men det omvända gäller också.

- Om möjligt, använd neddimmat rött ljus.
- Undvik att titta på elektroniska skärmar 2-3 timmar före sänggående.
- Använd glasögon som blockerar blått ljus om du ändå skall titta på skärmar innan läggdags.
- Det finns även appar att använda som minskar blåljusinnehållet till PC och andra apparater.

7.2 Gula glasögon

7.2.1 Effekter på sömn

Ett försök utfört på ungdomar visade att blåljusblockerande glasögon kan vara ett användbart hjälpmedel för att motverka sömnstörande effekter av att använda till exempel LED-skärmar (van der Lely, o.a., 2014). Melatoninnivåer under natten, insomningstid och sömnkvalitet är signifikant bättre för de som använder blåljusblockerande glasögon. De tyckte också att glasögonen medgav acceptabel synkvalitet (Ayaki, o.a., 2016).

7.2.2 Varianter på glasögon

På liknande sätt som för fullspektrumljuskällor verkar det inte finnas någon enhetlig definition för vad som utgör ’blåljusblockerande glasögon’. Consumer reports, en icke vinstdrivande organisation i USA som utför oberoende
provning har dock testat tre modeller i avsikt att se om de blockerar blått ljus som påverkar sömnen. Av de tre, så är det bara ett par glasögon (Uvex Skyper safety eyewear) som ute stänger nästan allt blått ljus. De är orangerfärgade och billigast i testet. Ett annat par (Gunnar Intercept gaming glasses), blockerar ungefär hälften av det blå ljuset. De har gula glas och är dyrast i testet. Det tredje paret (Spektrum Pro Blue Light Blocking Glasses), blockerar bara ett tredjedel av det blå ljuset. De har ljugula glas och hade ett pris nära de dyraste glasögonen (Consumer Reports, 2016).

Även om testet var litet kan man ändå inte låta bli att notera att ju gulare glasögon var desto effektiva var de på att stänga ute blått ljus. Detta stöds av en studie som visade att guloranga glasögon hade en större positiv effekt på sömnen än gula. (Burkhart & Phelps, 2009). Vanliga gula skyddsglasögon är lätt tillgängliga och kan vara värda att prova. De har ju också fördelen att de är billiga och brukar vara tillgängliga i varianter som går att ha över sina vanliga glasögon. Då avsikten med dessa glasögon är att främja sömn skall de inte användas vid uppgifter som kräver god vakenhet (förf. kom.).

7.3 **Reduktion av ljus från skärmar**

Det finns också appar eller program för PC och smartphones som skall minska det blå ljuset från skärmen kvällstid. Även om det skrivs mycket om dessa i tidningar och bloggar e.t.c. verkar specifik forskningen på området hittills närmast obeintlig.

7.4 **Få naturligt solljus**

Ett annat alternativ är att få exponering för starkt solljus (obs! titta aldrig in i solen) under dagen, då det verkar hjälpa till att motverka de sömnstörningar som annars kan komma av att utsättas för ljus från elektroniska skärmar under kvällstid (F Rångtell, 2016).
8 Ljus för fartygsbesättningar

8.1 Bakgrund

Vi behöver dock inte famla helt i mörker då United States Coast Guard (USCG) Research and Development Center har utarbetat en guide för hur man kan arbeta för att förbättra besättningarnas kapacitet och säkerhet ombord på handelsfartyg (Carlos & Pik, 2003). Guiden heter CREW ENDURANCE MANAGEMENT PRACTICES: A GUIDE FOR MARITIME OPERATIONS och finns tillgänglig att ladda ner från USCG’s hemsida. Guiden riktar sig till alla rederier och ombordanställda som är intresserade av säkerhet och hälsa och gör det möjligt för dem att identifiera specifika faktorer som påverkar förmågan och metoder för att hantera detta optimalt.

Ämnen som tas upp i guiden spänner över ett relativt brett område och är värt att läsa, medan det som tas upp här begränsas sig i huvudsak till sektion III, som behandlar ljushanteringstekniker för att matcha besättningsmedlemmens energinivå med dennes arbetsperioder. USCG använder åtminstone två beskrivningar för artificiellt ljus, så som dagljusliknande källor eller bara ’fluorescens light’ och då avses vanliga lysrör (i olika former) eller motsvarande teknik, vilket inte garanterar tillräckligt innehåll av de blå våglängderna som behövs för att få önskvärd verkan på sömn och vakenhet. Texten bör snarast läsas så att alla artificiella alternativ till dagsljus skall vara av en typ som är tillräckligt väl innehåller ljus av relevanta våglängder, vilket beskrivs tidigare i denna rapport (förf. kom.).

8.2 Anpassning av dygnspynt

Strategiskt användande ljushanteringstekniker kan hjälpa besättningsmedlemmar att anpassa sig till att arbeta bättre nattetid i stället för dagtid. Det tar cirka 5-6 dagar med hjälp av ljushanteringsteknik för att fullständig anpassa sig till nattarbete. Genom att exponera ögat för artificiellt dagsljus (man skall inte stirra direkt in i ljuskällan) efter solnedgången och fram
till 0200 under dag 1-2 och sedan förlänga denna tid ytterligare under dag 3-4 för att dag 5-6 utsättas för ljus ända fram till 0700. I figur 3 visar den mörkblå kurvan hur man normalt har sin dygnssytem med låg vakenhet (eng. energy) under de mörka timmarna under natten. Den klarblå kurvan visar hur det går att förskjuta sin period med låg vakenhet till förmiddagen för att istället ha hög vakenhet vid ett arbetspass på natten.

8.3 Konflikt med mörkerseendet
Tyvärr fungerar inte ljushanteringsteknik i kombination med ett fullgott mörkerseende, varför detta inte direkt kan tillämpas av bryggtjänstgörande personal så som till exempel styrman och utkik. Det finns dock några rekommendationer man kan överväga:
• Reducera vaktens längd för att minimera tröttheten. Uppmuntra träning kvällstid.

• Tillåt personal som avslutar sin vakt på morgontimman att gå och lägga sig före soluppgången med möjlighet till minst 7-8 timmars sömn utan avbrott. Övertid skall förläggas efter denna period och fritidsaktiviteter till kvällen.

9 Slutsatser och diskussion

Det är ingen tvekan om sömnens betydelse för att kunna arbeta utvilad och säkert. Det vi ser är nu också att forskningen ger ett tydligt stöd för att god sömn också är viktig för vår långsiktiga hälsa och välbefinnande. Även forskningen kring ljusets betydelse för sömn och dygnrhythm är nu så omfattande att det är värt att beakta inte bara för liv och arbete ombord på fartyg, utan som en del av en hälsosam livsstil i sin helhet.

Råden som presenteras är avsedda att kunna tas till vara av rederi, befäl och den enskilde besättningsmanna. Det är dock viktigt att förändringarna sker planerat, varsamt och kontrollerat i överenskommelse med rederi och befäl så att man säkerställer att i inga oönskade effekter uppstår samt att man kan hantera dessa utan att fara uppstå.

Det som behöver gås igenom är till exempel vilka utrymmen som bör ha fullspektrumljuskällor. Det är speciellt lämpligt att beakta arbetsplatser där stor tid spenderas så som maskinkontrollrum, lastkontrollrum, byssa med flera. Även uppehållsplatser som matsal och dagrum kan vara lämpliga kandidater. Vid besök på utrymmen med fullspektrumljuskällor kan de som inte vill utsättas för ljuset stänga ute detta med gula glasögon.

I hytterna borde det finnas tillgång till fullspektrumljus och även kanske det motsatta alternativt med rött ljus för att kunna anpassa ljusmiljön till den personliga arbetssituationen.

Korridorer, förråd, tvättutrymmen med mera, där man bara vistas kortvarigt, borde inte behöva särskilt beaktande med avseende på ljusmiljön.

Bryggan, som normalt är släckt nattetid för att inte störa mörkerseendet behöver antagligen inte fullspektrumljuskällor, om inte mycket arbete utförs där till exempel i hamn eller motsvarande.

Lastutrymmen på till exempel rorofartyg skulle kunna vara aktuella för fullspektrumljuskällor, men här kanske den ekonomiska upphoffningen är för stor för att motivera ett byte av ljuskällor.
10 References

Jensen, S. E. (den 13 juli 2002). 10 000 nervceller i hjärnan styr vår dygnsrytm. Hämtat från Läkemedelvärlden: http://www.lakemedelsvarlden.se/nyheter/10-000-nervceller-i-hj%C3%A4rnan-styr-v%C3%A5r-dygnsrytm-1695

Nationalencyklopedin. Hämtat från Sömn: http://www.ne.se/uppslagsverk/encyklopedi/l%C3%A5ng/s%C3%B6mn

Paul, K. N., Saafir, T. B., & Tosini, G. (december 2009). The role of retinal photoreceptors in the regulation of circadian rhythms. Reviews in Endocrine and Metabolic Disorders, ss. 271-278.

Åkerstedt, T. (den 01 03 2004). Ge sömnen tid!